introduction to dislocations

Download Book Introduction To Dislocations in PDF format. You can Read Online Introduction To Dislocations here in PDF, EPUB, Mobi or Docx formats.

Introduction To Dislocations

Author : Derek Hull
ISBN : 008096673X
Genre : Technology & Engineering
File Size : 84. 96 MB
Format : PDF, Mobi
Download : 195
Read : 748

Download Now

In materials science, dislocations are irregularities within the crystal structure or atomic scale of engineering materials, such as metals, semi-conductors, polymers, and composites. Discussing this specific aspect of materials science and engineering, Introduction to Dislocations is a key resource for students. The book provides students and practitioners with the fundamental principles required to understand dislocations. Comprised of 10 chapters, the text includes advanced computer modeling and very high-resolution electron microscopy to help readers better understand the structure of atoms close to the core of dislocations. It shows that atomic arrangement has a significant effect on the formation of dislocations and thereby on the properties of solids. The first two chapters of the book present an overview of dislocations. The crystal structures and the various defects and dislocations are discussed, and methods of observation and diagnosis of dislocations are covered. Chapters 3 to 5 discuss the behavior of dislocations and explain how changes in the structure and arrangement of atoms can affect the behavior of dislocations. The three chapters also discuss the mechanical properties of dislocations. The remaining chapters offer a detailed discussion of the mechanisms of dislocations and the mechanical strength of crystalline solids. The book is written for undergraduate- and graduate-level students in both materials science and mechanical engineering. Non-experts and novices working on mechanical properties, mechanisms of deformation and fracture, and properties of materials, as well as industrial and academic researchers, will find this book invaluable. Long-established academic reference by an expert author team, highly regarded for their contributions to the field. Uses minimal mathematics to present theory and applications in a detailed yet easy-to-read manner, making this an understandable introduction to a complex topic. Unlike the main competition, this new edition includes recent developments in the subject and up-to-date references to further reading and research sources.

An Introduction To Composite Materials

Author : D. Hull
ISBN : 9781107393189
Genre : Technology & Engineering
File Size : 25. 17 MB
Format : PDF, Docs
Download : 650
Read : 899

Download Now

This edition has been greatly enlarged and updated to provide both scientists and engineers with a clear and comprehensive understanding of composite materials. In describing both theoretical and practical aspects of their production, properties and usage, the book crosses the borders of many disciplines. Topics covered include: fibres, matrices, laminates and interfaces; elastic deformation, stress and strain, strength, fatigue crack propagation and creep resistance; toughness and thermal properties; fatigue and deterioration under environmental conditions; fabrication and applications. Coverage has been increased to include polymeric, metallic and ceramic matrices and reinforcement in the form of long fibres, short fibres and particles. Designed primarily as a teaching text for final-year undergraduates in materials science and engineering, this book will also interest undergraduates and postgraduates in chemistry, physics, and mechanical engineering. In addition, it will be an excellent source book for academic and technological researchers on materials.

Introduction To Dislocation

Author : Derek Hull
ISBN : UCSD:31822012593968
Genre : Science
File Size : 44. 42 MB
Format : PDF, ePub, Docs
Download : 844
Read : 947

Download Now

Dislocations In Solids

Author : Hideji Suzuki
ISBN : 9067640433
Genre : Science
File Size : 85. 49 MB
Format : PDF, Docs
Download : 171
Read : 665

Download Now

This volume comprises the Proceedings of the Yamada Conference IX on Dislocations in Solids, held in August 1984 in Tokyo. The purpose of the conference was two-fold: firstly to evaluate the increasing data on basic properties of dislocations and their interaction with other types of defects in solids and, secondly, to increase understanding of the material properties brought about by dislocation-related phenomena. Metals and alloys, semi-conductors and ions crystals were discussed. One of the important points of contention was the electronic state at the core of dislocation. Another was the dislocation model of amorphous structure.

Solid State Ionic Devices 5

Author : E. D. Wachsman
ISBN : 9781566776745
Genre : Science
File Size : 20. 27 MB
Format : PDF, Docs
Download : 866
Read : 1170

Download Now

Solid-state electrochemical devices, such as batteries, fuel cells, membranes, and sensors, are becoming pervasive in our technologically driven lifestyles. The development of these devices involves common research themes such as ion transport, interfacial phenomena, and device design and performance, regardless of the class of materials or whether the solid state is amorphous or crystalline. However, results of recent research in this field tend to be presented in symposia separated along the lines of particular solidstate materials disciplines rather than by phenomena controlling device performance. The papers in this issue of ECS Transactions were presented at the fifth of a series in international symposia "Solid-State Ionic Devices V", at the 212th Electrochemical Society Meeting, in Washington DC, October 7-12, 2007. The intent of the symposia was to provide a forum for current advances in ionically conducting materials and devices that is organized along phenomenological lines, rather than by specific material discipline. The papers in this issue range from the fundamentals of ionic and mixed ionic-electronic transport to device performance and are in keeping with that intent.

Introduction To Anisotropic Elasticity Theory Of Dislocations

Author : John Wickham Steeds
ISBN : UOM:39015008084074
Genre : Science
File Size : 40. 36 MB
Format : PDF, Docs
Download : 759
Read : 811

Download Now

Fundamental Aspects Of Dislocation Interactions

Author : G. Kostorz
ISBN : 9781483274928
Genre : Technology & Engineering
File Size : 67. 37 MB
Format : PDF, ePub
Download : 937
Read : 804

Download Now

Fundamental Aspects of Dislocation Interactions: Low-Energy Dislocation Structures III covers the papers presented at a European Research Conference on Plasticity of Materials-Fundamental Aspects of Dislocation Interactions: Low-Energy Dislocation Structures III, held on August 30-September 4, 1992 in Ascona, Switzerland. The book focuses on the processes, technologies, reactions, transformations, and approaches involved in dislocation interactions. The selection first offers information on work softening and Hall-Petch hardening in extruded mechanically alloyed alloys and dynamic origin of dislocation structures in deformed solids. Discussions focus on stress-strain behavior in relation to composition, structure, and annealing; comparison of stress-strain curves with work softening theory; sweeping and trapping mechanism; and model of dipolar wall structure formation. The text then ponders on plastic instabilities and their relation to fracture and dislocation and kink dynamics in f.c.c. metals studied by mechanical spectroscopy. The book takes a look at misfit dislocation generation mechanisms in heterostructures and evolution of dislocation structure on the interfaces associated with diffusionless phase transitions. Discussions focus on dislocation representation of a wall of elastic domains; equation of equilibrium of an elastic domain; transformation of dislocations; and theoretical and experimental background. The selection is a valuable reference for readers interested in dislocation interactions.

Stress And Strain In Epitaxy Theoretical Concepts Measurements And Applications

Author : J.-P. Deville
ISBN : 9780080541860
Genre : Science
File Size : 89. 16 MB
Format : PDF, Docs
Download : 880
Read : 338

Download Now

This book contains keynote lectures which have been delivered at the 3rd Porquerolles' School on Surface Science, SIR2000 (Surfaces-Interfaces-Relaxation). The aim of this school was to review the main concepts necessary to understand the role of interfacial stress, strain and relaxation in crystal growth by heteroepitaxy. By bringing together scientists from various fields (physics, chemistry, materials science and engineering) which daily use complementary methodological approaches (experiment, theory, modelization), the school allowed to offer 11 multidisciplinary courses. This book addresses the state of art of stress in epitaxial materials, it describes the various methods to measure the atomic displacement and stress fields, it reviews the spectroscopic methods necessary to map the interface chemistry, it details the theoretical methods and concepts which are needed to predict them and it questions the fact that stress and relaxation can induce specific properties in magnetism, catalysis, electron transport and so on. The field of stress and strain in heteroepitaxy has know large developments during the last ten years. New techniques have been used to set up new devices in which functionalities are obtained through structuration at a nanometer scale. Large-scale integration and reduced dimensions are the key factors to optimize the achievements of these devices. Already used in industry (quantum wells, magnetic sensors), these devices are obtained by molecular beam epitaxy, sputtering or pulsed laser deposition. Their reduced dimensionality increased the number of surfaces and interfaces, the role of which has to be precised. Experimentalists try now to associate materials having very different crystal structure and chemical composition. The elastic stress stored in the device can induce various phenomena which have to be evaluated, understood and predicted. The book intends also to show that many questions are still in debate.

Fundamentals Of Radiation Materials Science

Author : Gary S. Was
ISBN : 9783540494720
Genre : Technology & Engineering
File Size : 80. 94 MB
Format : PDF, ePub, Mobi
Download : 713
Read : 977

Download Now

This book is an eye-opening treatise on the fundamentals of the effects of radiation on metals and alloys. When energetic particles strike a solid, numerous processes occur that can change the physical and mechanical properties of the material. Metals and alloys represent an important class of materials that are subject to intense radiation fields. Radiation causes metals and alloys to swell, distort, blister, harden, soften and deform. This textbook and reference covers the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys.

Thin Films

Author : W. K. Liu
ISBN : 9810233906
Genre : Technology & Engineering
File Size : 21. 54 MB
Format : PDF
Download : 110
Read : 271

Download Now

Heteroepitaxial films are commonplace among today's electronic and photonic devices. The realization of new and better devices relies on the refinement of epitaxial techniques and improved understanding of the physics underlying epitaxial growth. This book provides an up-to-date report on a wide range of materials systems. The first half reviews metallic and dielectric thin films, including chapters on metals, rare earths, metal-oxide layers, fluorides, and high-c superconductors. The second half covers semiconductor systems, reviewing developments in group-IV, arsenide, phosphide, antimonide, nitride, II-VI and IV-VI heteroepitaxy. Topics important to several systems are covered in chapters on atomic processes, ordering and growth dynamics.

Top Download:

Best Books